Noetherian Connected Graded Algebras of Global Dimension 3

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graded algebras and subproduct systems: dimension two

Objects dual to graded algebras are subproduct systems of linear spaces, a purely algebraic counterpart of a notion introduced recently in the context of noncommutative dynamics (Shalit and Solel [5], Bhat and Mukherjee [2]). A complete classification of these objects in the lowest nontrivial dimension is given in this work, triggered by a question of Bhat [1].

متن کامل

Growth of Graded Noetherian Rings

We show that every graded locally finite right noetherian algebra has sub-exponential growth. As a consequence, every noetherian algebra with exponential growth has no finite dimensional filtration which leads to a right (or left) noetherian associated graded algebra. We also prove that every connected graded right noetherian algebra with finite global dimension has finite GK-dimension. Using t...

متن کامل

On co-Noetherian dimension of rings

We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This  is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...

متن کامل

Noetherian Hopf Algebras

This short survey article reviews our current state of understanding of the structure of noetherian Hopf algebras. The focus is on homological properties. A number of open problems are listed. To the memory of my teacher and friend Brian Hartley

متن کامل

Fixed Subrings of Noetherian Graded Regular Rings

Rings of invariants can have nice homological properties even if they do not have finite global dimension. Watanabe’s Theorem [W] gives conditions when the fixed subring of a commutative ring under the action of a finite group is a Gorenstein ring. The Gorenstein condition was extended to noncommutative rings by a condition explored by Idun Reiten in the 1970s, called k-Gorenstein in [FGR]. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2000

ISSN: 0021-8693

DOI: 10.1006/jabr.2000.8323